Multi-attribute Decision Analysis

Azarakhsh Rafiee a.rafiee@tudelft.nl

Multi-attribute Decision Analysis Methods

- Weighted Linear Combination
- Analytic Hierarchy Process
- Ideal Point Methods

Weighted Linear Combination

Weighted Linear Combination (WLC) is the most often used GIS-MADA method

- WLC model consists of two components:
 - \circ Criterion weights: w_k
 - o Value functions: $v(a_{ik})$

Weighted Linear Combination

Associates with the ith decision alternative (location) a set of criterion weights, w_1 , w_2 ,..., w_n , and combines the weights with the criterion (attribute) values, a_{i1} , a_{i2} , ..., a_{in} , (i = 1, 2, ..., m) as follows:

overall value of the i-th alternative at location, s_i , defined by the (x_i, y_i) coordinates

$$V(A_i) = \sum_{k=1}^n w_k v(a_{ik})$$

value of the ith alternative with respect to the k-th attribute measured by means of the value function

The alternative characterized by the highest value of V(Ai) is the most preferred one

Proximity-Adjusted WLC

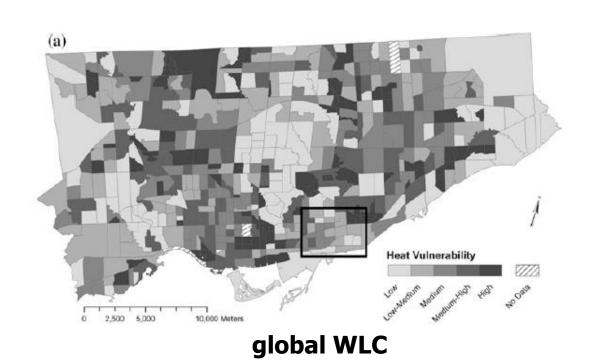
 Based on the idea of adjusting preferences according to the spatial relationship between alternatives, or an alternative and some reference locations

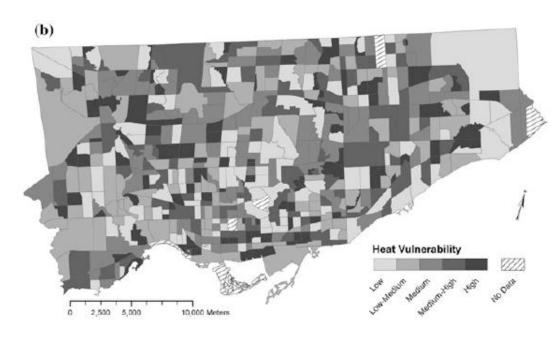
$$V(A_i^p) = \sum_{k=1}^n w_{ik} v(a_{ik})$$

proximity-adjusted weight, assigned to the i-th alternative with respect to the K-th criterion

Local WLC

overall value of the i-th alternative estimated locally (in the q-th neighbourhood)


$$V(A_i^q) = \sum_{k=1}^n w_k^q v(a_{ik}^q)$$
local criterion weight


value of the k-th criterion measured by means of the local value function in the q-th neighbourhood

• The decision alternative with the highest value of $V(A_i^q)$ is the most preferred alternative in the q-th neighbourhood.

global vs. local WLC models

local WLC

Heat vulnerability in Toronto modelled using: (a) global WLC, and (b) local WLC

Multiattribute Decision Analysis Methods

- Weighted Linear Combination
- Analytic Hierarchy Process
- Ideal Point Methods

Analytic Hierarchy Process

- One of the most comprehensive methods of multicriteria decision analysis
- Based on three principles:
 - decomposition
 - requires that a decision problem be decomposed into a hierarchy that captures the essential elements of the problem
 - comparative judgment
 - requires assessment of pairwise comparisons of the elements within a given level of the hierarchical structure, with respect to their parent in the next-higher level
 - synthesis of priorities
 - takes each of the derived ratio scale priorities in the various levels of the hierarchy and constructs a composite set of priorities for the elements at the lowest level of the hierarchy (that is, alternatives)

Analytic Hierarchy Process steps

AHP procedure involves three main steps:

- 1. developing the AHP hierarchy
- 2. assigning weights of importance to each element of the hierarchical structure
 - using the pairwise comparison method
- 3. constructing an overall priority rating

Hierarchical Structure

four levels:

- goal
- objectives
- attributes
- alternatives

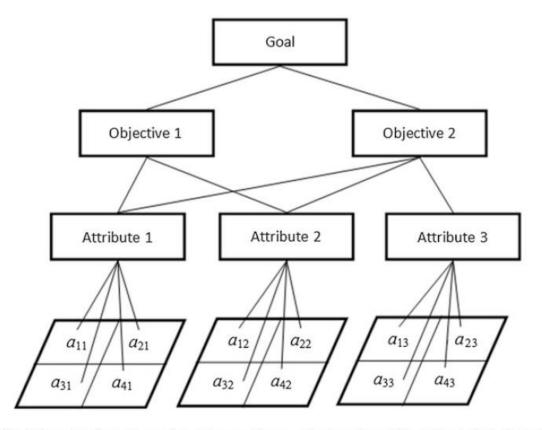


Fig. 2.1 Hierarchical structure of decision problem; a_{ik} is the value of the k-th attribute (criterion) associated with the i-th alternative (k = 1, 2, 3, and i = 1, 2, 3, 4)

Assigning weights of importance through Pairwise comparison

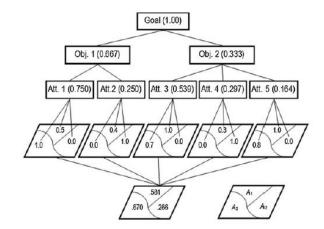
Normalization of Matrix C entries:

$$c_{kp}^* = \frac{c_{kp}}{\sum_{k=1}^n c_{kp}}$$
, for all $k = 1, 2, ..., n$.

then the weights are computed as follows

$$w_k = \frac{\sum_{p=1}^n c_{kp}^*}{n}$$
, for all $k = 1, 2, ..., n$.

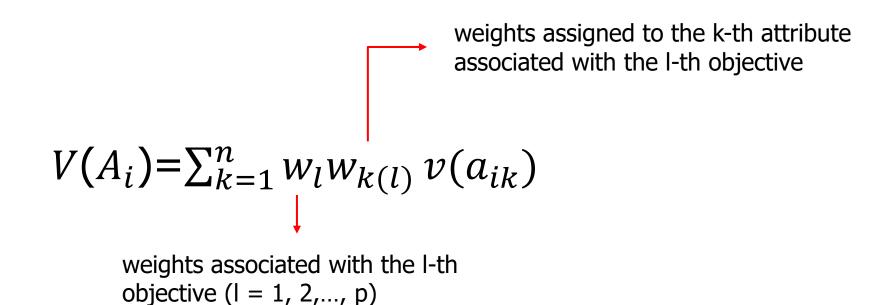
Pairwise Comparison weighting example


Pairwise comparisons of:

(a) Objectives with respect to goal

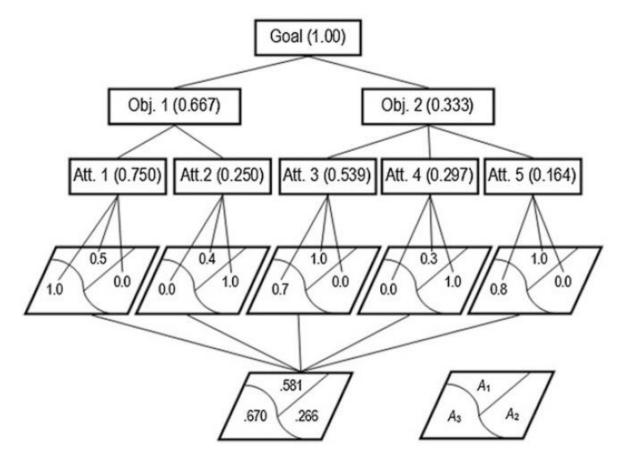
(b) attributes with respect to objective 1

(c) Attributes with respect to objective 2


(a)					
Goal					
Objectives	Obj.1		Obj.	2	w_l
Obj.1	1		2		0.667
Obj.2	0.5		1		0.333
Sum	1.5		3.0		1.000
CR = 0.00					
(b)					
Objective 1					
Attributes	Att.1		Att.2		$w_{k(1)}$
Att.1	1		3		0.750
Att.2	0.33		1		0.250
Sum	1.33		4.00		1.000
CR = 0.00					
(c)					
Objective 2					
Attributes	Att.3	Att.4		Att.5	$w_{k(2)}$
Att.3	1	2		3	0.539
Att.4	0.5	1		2	0.297
Att.5	0.33	0.5		1	0.164
Sum	1.83	3.50		6.00	1.000
CR = 0.01					

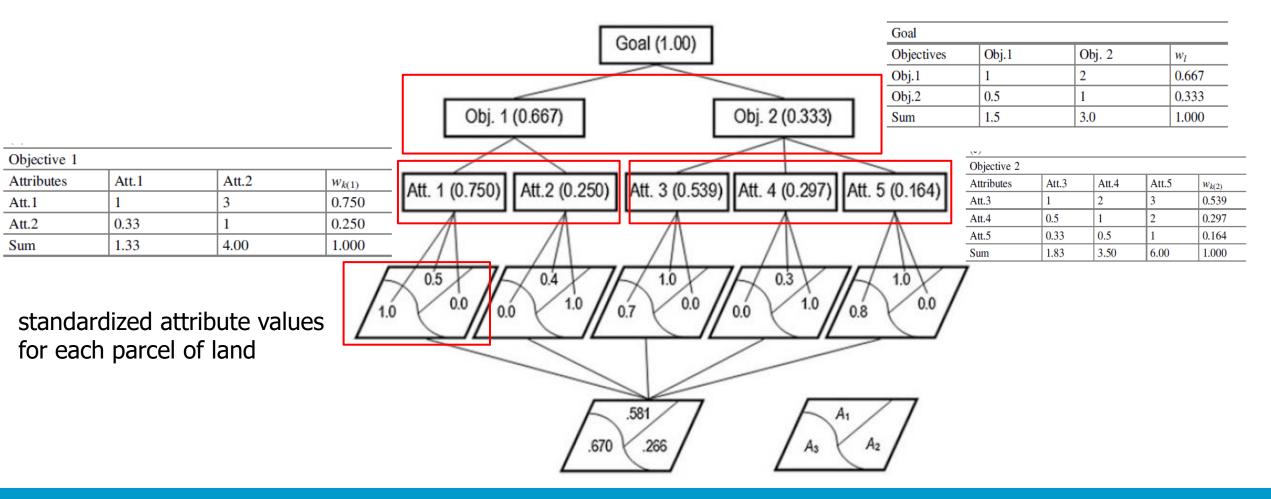
Analytic Hierarchy Process

Global Method

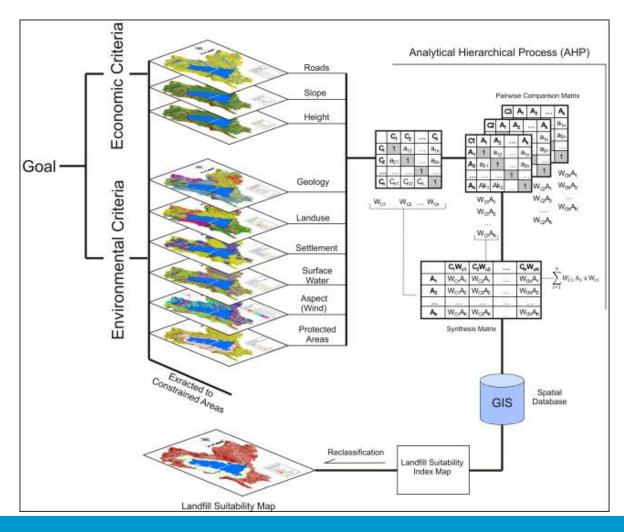


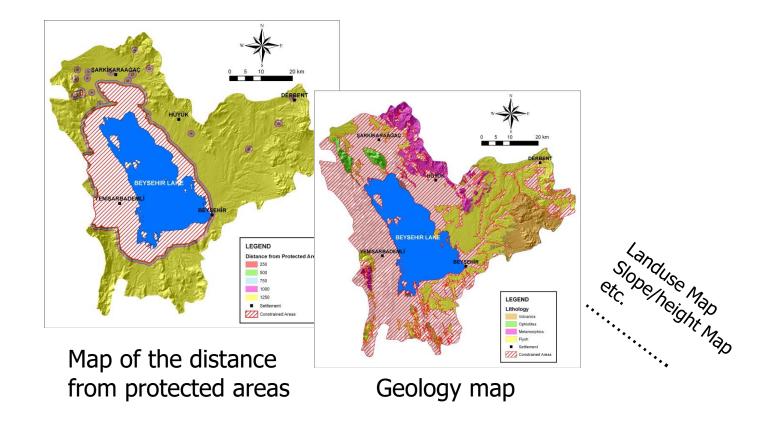
GIS-based AHP model example

A1, A2, A3: Alternatives

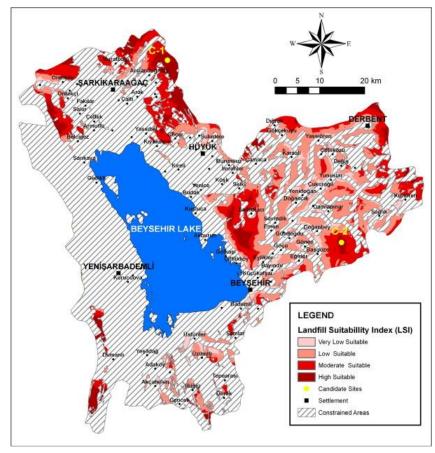

Obj: Objective

Att: Attribute


evaluating three parcels of land (A1, A2, and A3)


GIS-based AHP example for GIS for landfill site selection

Source: Şener, Ş., Şener, E., Nas, B., & Karagüzel, R. (2010). Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste management, 30(11), 2037-2046.



GIS-based AHP example for GIS for landfill site selection

GIS-based AHP example for GIS for landfill site selection

Landfill suitability map

Multiattribute Decision Analysis Methods

- Weighted Linear Combination
- Analytic Hierarchy Process
- Ideal Point Methods

Ideal Point Methods

- Based on evaluating decision alternatives with reference to some specific target or goal
- Ordering a set of decision alternatives on the basis of their separations from some ideal/reference point

Reference Points and Separation Measures

- Reference point: any significant target or goal against which the decision alternatives are evaluated
- This hypothetical alternative is often defined in terms of the positive ideal (utopia) point, or negative ideal (or anti-ideal or nadir) point
- Positive and negative ideal points are determined as the best and worstpossible value achievable by any alternative, respectively:

positive ideal alternative
$$A^+=t_1^+,t_2^+$$
 where $t_k^+=\max_i\{v(a_{ik})\}$ negative ideal alternative $A^-=t_1^-,t_2^-,\ldots,t_n^-$ where $t_k^+=\min_i\{v(a_{ik})\}$

Reference Points and Separation Measures

Based on the definition of value function $v(a_{ik})$:

$$A^{-} = (0, 0, ..., 0)$$

 $A^{+} = (1, 1, ..., 1)$

$$A^{+} = (1,1,...,1)$$

separation of the i-th decision alternative from a reference point can be defined by means of the L_p distance metric as follows:

> reference value for the kth criterion, e.g., $t_k^+/t_k^ L_p(A_i) = \left[\sum_{k=1}^n \left(w_k | t_k - v(a_{ik}) | \right)^p\right]^{\frac{1}{p}}$ power parameter ranging from 1 to ∞

Distance Metric

If p=1
$$L_1(A_i) = \sum_{k=1}^n w_k |t_k - v(a_{ik})|$$
 rectangular distance (Manhattan metric)

If p=2
$$L_2(A_i) = \sqrt{\sum_{k=1}^n \left(w_k | t_k - v(a_{ik})|\right)^2}$$
 straight-line distance

Ideal Point Models

Two versions of the ideal point model:

positive ideal models

$$A^+ = (1,1, ...,1)$$

negative ideal models

$$A^- = (0, 0, \dots, 0)$$

$$L_p^+(A_i) = \left[\sum_{k=1}^n \left(w_k|1-v(a_{ik})|\right)^p\right]^{\frac{1}{p}}$$
 The best alternative is that one which **minimizes** the value of $L_p^+(A_i)$

$$L_p^-(A_i) = \left[\sum_{k=1}^n \left(w_k v(a_{ik})\right)^p\right]^{\frac{1}{p}}$$
 The best alternative is that one which **maximizes** the value of $L^-(A_i)$

value of $L_n^-(A_i)$

Ideal Point versus WLC

$$L_p^+(A_i) = 1 - V(A_i)$$

$$L_p^-(A_i) = V(A_i)$$

the negative ideal model for p = 1 is completely equivalent to WLC

Example

Simple problem of evaluating 16 location (rasters) based on two criteria:

The criteria are to be **maximized**

criterion weights:

$$W_1 = 0.6$$

$$W_2 = 0.4$$

a	i1			
	5.5	5.0	3.0	1.0
	3.5	6.5	10.5	9.5
	1.0	0.0	8.5	6.0
	3.5	1.5	12.0	10.5

<i>1</i> ₁₂			
0.0	1.0	2.0	3.0
1.0	1.4	2.2	3.2
2.0	2.0	2.8	3.6
3.0	3.2	3.6	4.2

Positive ideal model

overall values of alternatives using the ideal point $A^+ = (1.0, 1.0)$

(a) .345 .275 .340 .336 best .270 .458 .735 .780 alternative .240 .210 .692 .643 .461 .380 .943 .925

L_1^+	(A_i)	model
1	(")	

(b)				
	.275	.268	.242	.290
	.199	.351	.565	.564
	.197	.210	.502	.456
	.335	.314	.691	.660

$$L_2^+(A_i)$$
 mode

(C)				
	.275	.250	.192	.286
	.175	.325	.525	.476
	.190	.210	.425	.351
	.286	.305	.600	.528

$$L^+_\infty(A_i)$$
 mode

Negative ideal model

overall values of alternatives using the ideal point $A^- = (0.0, 0, 0)$

(a) .655 .725 .730 .542 best alternative .790 .760 .539 .620

660	.664
265	.220
308	.357
057	.075

L_1^-	(A_i)	model
1	\ •/	

(b)				
	.515	.464	.496	.562
	.523	.383	.205	.157
	.587	.630	.220	.305
	.440	.534	.057	.075

$$L_2^-(A_i)$$
 model

) _r				
	.405	.358	.450	.550
	.427	.291	.190	.126
	.550	.600	.176	.300
	.425	.525	.057	.075

$$L_{\infty}^{-}(A_i)$$
 model

Spatially explicit ideal point model

value of the i-th alternative at the x, y location for the k-th criterion

$$L_p^+(A_{i(x,y)}) = \left[\sum_{k=1}^n \left(w_{i(x,y)k} | 1 - v(a_{i(x,y)k}) | \right)^p \right]^{\frac{1}{p}}$$

weight associated with the kth criterion and the i-th alternative at the x, y location

